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NOTATION

A Projected area ef one sternplane extended
to hull centerline (leading edge contin-

ued at same angle)

AP Aft perpendicular (end of afterbody)

2b 2

a 
Effective aspect ratio, 2b2

b Distance between sternplane tip chord and
hull centerline

2b Span parameterd

CL Lift coefficient, L

c Mean chord of sternplane, average of tip
chord and root chord

d Maximum diameter of hull

L 11ydrodynanic lilt force, positive upward

Length of hull

M M' 1 M Hydrodynamic mroment about y-axis

10 
3 U2

M
MM - w Derivative of moment component with respect

w w ýOL3U to velocity component w

AM
w.•, , . - Contribution of sternplanes to M

w w 3U

U Velocity of origin of body axes relative
to fluid

w w' w Componen. of U along z-axis

Xx' X Hydrodynamic longitudinal force, positive

io z 2 U7 forward

zZ' - Z IHydrodynamic normal force, positive downward

viii



Z
Z Z ' - Derivative of normal force component with

W w ý½p 2 U respect to velocity component w

LZ
LZ AZ ' w Contribution of sternplanes to Z

w w ½ne2 U w

Cx Angle of attack

Mass density of water

•'.x
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ABSTRACT

Experiments were conducted to determine the forces and moments due

to angle of attack on a representative streamlined body of revolution

alternately appended with members of a systematic series of stern control

surfaces. The data from these experiments are presented in the report in

the form of graphs and tabulations of the nondimensional force and moment

coefficients and static stability derivatives. Based on these data

empirical mathematical expressions have been developed to predict the

contribution of sternplanes to the static stability derivative Z ' whenw

the sternplanes are appended to a submarine whose basic hull is a stream-

lined body of revolution. A graph Is presented for estimating the location

of the center of pressure of the forces due to the presence of sternplanes.

ADMINISTRATIVE INFORMATIUN

This project was performed under the sponsorship of the General

Hydrodynamic Research Program.

INTRODUCTION

An experimental investigation was made of the static stability

characteristics of a streamlined body of revolution alternately appended

with each set of a family of low-aspect-ratio stern control surfaces.

The purpose of the investigation was to determine the contributions of

the control surfaces to the forces and moments on the total fin-body

combinations and to present the results in a form that would be useful

in the preliminary design of submarines from a stability point of view.

In the past extensive experimental work was carried out at the

David W. Taylor Naval Ship R&D Center to determine the tree-stream
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,',aracteristics of a family of low-aspect-ratio control surfaces. This

effort provided comprehensive information more directly applicable to

submarine appendage design than had been available In the aerodynamic

literature. As a next step, the work presented in this report was per-

formed to provide fundamental data on the characteristics of control

surfaces when fin-body interaction factors are present.

This report describes the model and stern control surfaces; out-

lines the procedures used in the experiments; presents graphs and tables

of ,he experimental results; and present empirical methods for estimat-

ing the contributions of sternplhnes to the static stability derivatives

for submarines whose basic hulls are streamlined bodies of revolution.

NEtIERAL CONSIDERATIONS

I'he hulls of most modern submarines are basically bodies of revolu-

tion with afterbodies (the portion of the body aft ef the maximum diameter)

such that the ratio uf the length of the tail (or afterbody) to the maximum

diameter falls somewhere between 4.2 and 4.6. This chara.reristic is a

roigh indication chat the fullness of the tails and the nondimensional

thickness of the buundaty luyer• in t•he vicinity of the stern control sur-

faces do not vary markedly from submarine to submarine.

For this reason the assumption was made that an experimental study

of fi'-body combinations composed of stern control surfaces mounted on a

body of revolution having a fairly representative tail section would yield

fin-body interaction effects that could be applied to other bodies having

generally similar afterbodies regardless of the shape of the forebodies.

111icker, I., Folger and Leo F. Fehlner, "Free-Stream Characteristics of a
Family of Low-Aspect-Ratio, All-Movable Control Surfaces for Application
to Ship Design," DT>M Report 933 Revised Edition (December 1958).



An existing streamlined body of revolution having an afterbody fine-

ness ratio of 4.4 was chosen as the test vehicle. A family of 20 sets

(4 identical stern control surfaces per set) was selected which covered a

range of sizes, relative to the hull, that could reasonably be expected

to be of interest for submarine design. No propeller was used,

The planform of the planes was such that the trailing edges were

normal to the tip chords. The sweep angle and section shape were the

same for all. The spana and tip chords were varied in a systematic way

so that for each of four outreaches from the centerline of the model

there were five sets of planes with different tip chords.

The vehicle was tested with each of the 20 sets of planes oriented

on the hull in the cruciform arrangement with trailing edges normal to

0l1 lungiLtudial axis of the hull. 'le rudders were located slightly

forward of the sternplanes and the longitudinal positions of the trail-

ing edges of both sternplanes and rudders with respect to the AP of the

model remained the same for all configurations.

DESCRIPTION OF BODY AND STERN CONTROL SURFACES

1 :Te body was Model 4621, a 180-inch (4.572-metre) strearlined body of

revolution with a 24.52-inch (0.623-metre) maximum diameter. The hull

was fiberglass with a mahogany tail cone. The offsets of the model and

other pertinent characteristics are given in Tables la and lb.

The control surfaces were constructed of mahogany and consisted of

a family of 20 sets of 4 identical square-tipped planes. The trailing

edge uf each of the planes was normal to the tip chord. Each had a

quarter-chord sweep angle of 15.25 degrees and a NACA 0015 section shape.

"l•he bases of the planes were cut on a 12-degree slant to fit the average

r3



TABLE 1A - GEOMETRIC CHARACTERISTICS OF BARE HULL EXPRESSED
IN U.S. CUSTOMARY UNITS

Length, ft. 15.0

Maximum diameter, ft. 2.044

Wetted surface area, sq. ft. 70.55

Volume, cu. ft. 29.53

Longitudinal center of buoyancy, ft. 6.684

Hull Offsets

X in inches Y in inches X in inches Y in inches

0.0 0.000 93.6 11.82
3.6 3.500 97.2 11.66
7.2 4.977 100.8 11.49

10.8 6.108 104.4 11.29
14.4 7.047 108.0 11.07

18.0 7.850 111.6 10.83
21.6 8.549 115.2 10.56
25.2 9.160 118.8 10.27

28.8 9.697 122.4 9.954

32.4 10.17 126.0 9.613

36.0 10.58 129.6 9.243

39.6 10.93 133.2 8.843
43.2 11.24 136.8 8.411

46.8 11.50 140.4 7.945
50.4 11.71 144.0 7.447
54.0 11.89 147.6 6.910
57.6 12.03 151.2 6.334
61.2 12.13 154.8 5.715
64.8 12.21 158.4 5.053
68.4 12.25 162.0 4.344
72.0 12.26 165.6 3.584
75.6 12.25 169.2 2.774

79.2 12.21 172.8 1.908
82.8 12.15 176.4 0.984
86.4 12.06 180.0 0.000

90.0 11.97

4



TABLE IB - GEOMETRIC CHARACTERISTICS OF BARE HULL
EXPRESSED IN S. 1. UNITS

Length, m 4.5720

Maximum diameter, m 0.6228

Wetted surface area, m2  6.5545
3

Volume, m 0.8362

Longitudinal center of buoyancy, m 2.0373

Hull Offsets

X In Metres Y in fietres X in netres Y in T-tres

0.0 0.0 2.3774 0.3002
0.0914 0.0889 2.4689 0.2962
0.1829 0.1264 2.5603 0.2918
0.2743 0.1551 2.6518 0.28b8
0.3658 0.1790 2.7432 0.2812
0.4572 0.1994 2.8346 0.2751
0.5486 0.2171 2.9261 0.2682
0.6400 0.2327 3.0175 0.2608
0.7315 0.2463 3.1090 0.2528
0.8230 0.2583 3.2004 0.2442
0.9144 0.2687 3.2918 0.2348
1.0058 0.2776 3.3833 0.2246
1.0973 0.2855 3.4747 0.2136
1.1887 0.2921 3.5662 0.2018
1.2802 0.2974 3.6576 0.1892
1.3716 0.3020 3.7490 0.1755
1.4630 0.3056 3.8405 0.1609
1.5545 0.3081 3.9319 0.1452
1.6459 0.3101 4.0234 0.1283
1.7374 0.3112 4.1148 0.1103
1.8288 0.3114 4.2062 0.0910
1.9202 0.3112 4.2977 0.0704
2.0117 0.3101 4.3891 0.0485
2.1031 0.3086 4.4806 0.0250
2.1946 0.3063 4.5720 0.0

2.2860 0.3040

5



ilope of the hull at the mounting points. A sketch of the general planform

and the dimensions coanon to all of the planes are presented in Figure 1.

When the planes were mounted on the tail cone of the model, the

trailing edges were normal to the longitudinal axis of the body. The

position of the trailing edges of the sternplanes was maintained at 7.9

inches (0.201 metres) forward of the AP. The rudders were 2.25 inches

(0.057 metres) forward of the sternplanes. The spans and tip chords

were varied in a systematic way so that the sternplanes had four differ-

ent outreaches from the centerline of the model, and for each outreach

there were five sets of planes with different tip chords. The outreaches

of the sternplanes were 9, 12, 14.5, and 17.5 inches (0.228, 0.3048,

0.3683 and 0.4445 metres). The tip chords were 3, 5, 7, 9, and 11 inches

(0.0762, 0.1270, 0.1778, 0.2286, and 0.2794 metres). Because of the

longitudinal offset between the rudders and sternplanes, the outreach

of the rudders was, in each case, 0.48 inches (1.22 centimetres) greater

than their matchlng sternplanes.

The geometric characteristics of the sternplanes are given in Tables

2a and 2b. Figure 2 is a sketch of the modcl with control surfaces.

TEST APPARATUS AND PROCEDURE

The experimental work was conducted in the deep-water basin on
2

Towing Carriage 2 using the DTNSRIDC Planar-Motion-Mechanism System.

The model was supported by two struts in tandem, 6 feet (1.829

metres) apart. The reference point was the center of buoyancy of the

bare hull and was located midway between the gimbal-centers associated

2 Gertler, Morton, "The DTNB Planar-Hotion-Mechanism System," NSRDC

Report 2523 (July 1967).

6
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TABLE 2A - GEOMETRIC CHARACTERISTICS OF STERNPLANES EXPRESSED
IN U.S. CUSTOMARY UNITS

Span A

(Values are for I sternplane)

Sternplanes 3A SA 7A 9A Il.A

Span from CL of hull, in. 9.0 9.0 9.0 9.0 9.0

Tip chord, in. 3.0 5.0 7.0 9.0 11.0

Root chord, in. 5.24 7.17 9.10 11.03 12.96

Taper ratio 0.57 0.70 0.77 0.82 0.85

Span, distance from root 6.16 5.96 5.77 5.57 5.37

chord to tip chord, in.

Projected area, sq. in. 25.4 36.2 46.3 55.6 64.0

Aspect ratio 1.50 0.98 0.72 0.56 0.45

Projected area of I plane 41.75 59.75 77.75 95.75 113.75

extended to hull center-

line, sq. in.

Aspect ratio of I plane 1.94 1.36 1.04 0.85 0.71

extended to hull center-

line

I9
---



TABLE 2a (continued)

Span B

(Values are for I sternplane)

Sternplanes 3B 5B 7B 9B 11B

Span from cL of hull, in. 12.0 12.0 12.0 12.0 12.0

Tip chord, in. 3.0 5.0 7.0 9.0 11.0

Root chord, in. 6.30 8.22 10.14 12.08 14.01

Taper ratio 0.48 0.61 0.69 0.75 0.79

Span, distance from root 9.06 8.86 8.66 8.46 8.26

chord to tip chord, in.

Projected area, sq. in. 42.0 58.4 74.1 8R.9 103.0

Aspect ratio 1.95 1.34 1.01 0.81 0.66

Projected area of I plane 62.2 86.2 110.2 134.2 158.2

extended to hull center-

line, sq. in.

Aspect ratio of 1 plane 2.32 1.67 1.31 1.07 0.91

extended to hull center-

line

10



TABLE 2f (continued)

Span C

(Values are for I sternplane)

Sternplanes 3C 5C 7C 9C LIC

Span from C of hull, in. 14.5 14.5 14.5 14.5 14.5

Tip chord, in. 3.0 5.0 7.0 9.0 11.0

Root chord, in. 7.18 9.11 11.04 12.97 14.88

Taper ratio 0.42 0.55 0.63 0.69 0.74

Span, distance from root 11.46 11.27 11.07 10.87 10.68

chord to tip chord, in.

Projected area, sq. in. 58.2 79.3 99.6 119.1 137.8

Aspect ratio 2.26 1.60 1.23 0.99 0.83

Projected area of 1 plane 81.75 11C.75 139.75 168.75 197.75

extended to hull center-

line, sq. in.

Aspect ratio of 1 plane 2.57 1.90 1.50 1.25 1.06

extended to hull center-

line

AA

Ak

?11

•..ii



TABLE 2a (continued)

Span D

(Values are for 1 sternplane)

Sternplanes 3D 5D 7D 9D liD

Span from cL of hull, in. 17.5 17.5 17.5 17.5 17.5

Tip chord, In. 3.0 5.0 ..0 9.0 11.0

Root chord, in. 8.22 10.16 12.09 14.02 15.94

Taper ratio 0.37 6.49 0.58 0.64 0.69

Span, distance from root 14.36 14.16 13.96 13.76 13.57

chord to tip chord, in.

Projected area, sq. in. 80.5 107.1 132.9 158.0 182.3

Aspect ratio 2.56 1.87 1.47 1.20 1.01

Frojected area of I plane 108.2 143.2 178.2 213.2 248.2

extended to hull center-

line, sq. in.

Aspect ratio of 1 plane 2.83 2.14 1.72 1.44 1.23

extended to hull center-

line

12
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with the two struts. The longitudinal and normal force components with

respect to the body axes were measured by means of internal force balances

located at each strut. All of the tests were run at a depth of 10 feet

(3.048 metres) to the centerline and at a speed of 6 knots which corre-

sponds to a Reynolds number of 1.4 x 107 based on model length.

The experimental program consisted of static stability tests on

the bare hull and on the hull appended with each of the 20 sets of

control surfaces. The forces and moments were measured over a range

of angles of attack from -6 to 18 degrees. The control surface angle

settings were zero at all times. To stimulate turbulence a sandstrip

was installed on the hull 9 inches (0.229 metres) aft of the nose.

REDUCTON AND PRESENTATION OF DATA

The data obtained from the captive-model experiments are presented

in nondimensional form in the appendixes. The organization of the

appendixes is as follows:

Appendix A contains a derivation of an equation for representing

the ratio CZ /CLa as a function of the parameter 2b/d. Appendix B

contains plots of the nondimensional hydrodynamic coefficients X', Z',

and M' as functions of angle of attack. Data for the bare body as well

as for the body appended with each of the twenty sternplane configura-

tions are presented. Appendix C presents tabulations of data shown in

the plots in Appendix B. Appendix D contains tabulations of the deriva-

tives Zw M t, w ' AM ,Z, CLu which apply to each configuration.

Summary figures based on the data obtained from the experiments

are given in the body of the report.

I 17



DISCUSSION OF RESULTS

As mentioned in an earlier section, the major objective of this

investigation was to determine the contributions of control surfaces

to the forces and moments on the total fin-body combinations in order

to obtain information that would be useful in the preliminary design

of submarines from a stability point of view.

In accordance with this objective, the stability derivatives Zwt

and M ' were determined for all configurations by taking the slopes,

at the origin, of the curves shown in Appendix B of Z' and M' versus

angle cf attack and converting them to "per radian" measure. The values

of Z ' and M ' for the bare hull were then subtracted from the covre-
w w

sponding derivatives for the body with control surfaces to obtain the

incremental effects which are referred to in this report as Z w' and

W

In order to divorce the incremental effects of the control surfaces

from the length of the particular body on which they were tested, the

values of (-Z .') were re-nondimensionalized using the projected area,

2A. of the two sternplanes extended through the body. since for small

angles L : -Z and a - w', this procedure in effect converted the incre-

ments into lift-curve slopes, GZa, which could be compared with free-

stream results.

The work done by Whicker and Fehlner (Reference 1) has shown that

good correlation exists between experimentally-obtained lift-curve

18
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slopes for low-aspect-ratio control surfaces in the free stream and the

following semi-empirical expression for lift-curve slope

1. 8wa

1.8 + cos. co (-A- + 4)(1coo (1)

where

C slope of lift coefficient with respect to angle of attack a
in radians at i - 0

a - effective aspect ratio

A - sweep angle of quarter chord line

Values of CLa for various effective aspect ratios and a sweep angle

of 15.25 degrees were computed from this equation and were plotted as a

function of effective aspect ratio in Figure 3. The derivatives CZa

from the sternplane series were also plotted in Figure 3 as functions

of their respective effective aspect ratios (aspect ratios of the stern-

planes through the body). It can be seen from the figure that the experi-

mental values of CZo (indicated by the symbols) are functions of outreach

a. well as of aspect ratio.

The solid lines drawn through the data points were determined in the

following manner: For each span parameter. d-, the ratios of the experi-

mental values of C to the corresponding values of CLa from Equation (1)

were computed. Then the average of these ratios was computed and a curve

was constructed by multiplying the values of CLc by this average ratio.
ZL

Figure 4 is a plot of the average ratios, --- , as a function of theCLa
2bLc

span parameter, 2-- The curve joining the symbols is the following

19
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least-squares fit of the points:

C- .- 0.3644 + 1.2380 2b -003728 ())2
CLa (2)

for the range 0.734 • 2b/d " 1.426.

Combining Equations (1) and (2),

- 1.8-aa1- [0.3644 - 1.2380 (2b) + 0.3728 2 2 (3)C 1.8 + Cos A(lo-n--A + 4) d•+032 •- 3

Equation (3) may be used to compute the contribution to Z ' of a

given set of sternplanes on a given streamline body as follows:

since C 6

za w 2A

and the effective aspect ratio of the sternplanes extended through the

body is 2b 2

a--
A

then

w . . 8 2 0.3644- 1.2380 2b + 0.3728 (.Lb2 (4)w 1.8 + cos A(-~ '3 d + (4)-)[-34

for the range 0.734 : 2b/d - 1.426.

While Equation (2) gives a very good representation of the ratio

for values of a• in the range between 0.734 and 1.426, extrapolations

CL2

22



beyond this range cannot be relied upon. As the span of the sternplanes

approaches infinity the ratio - should approach unity. Equation (2)

CLa

does not satisfy this condition since it reaches a maximum value of
2b 2b

0.663 at -- 1.6604 and becomes zero at - 2.994.
C Z

An alternate equation for representing the ratio - is derived in
CLa

Appendix A. This equation fits the experimental data slightly less well

2bthan Equation (2) but has the advantage of becoming unity at -d-

For this reason it is recommended that this alternate equation which is

__ 0.56inb 1(0~.4015

CZA 0.2556b) db) 0.1612] - 0.6366 sin 2b/d (5)

2b 2b
be used for 0.4015 0.734 and 1.426 e .

d d

The use of Equation (5) then gives the tollowing equation for LZ w

,z _ 1. 8na 2.b,) ! 0.2556
w 1.8 + Cos. + 4) ( - 1 (.2b.6

(6)
.2b.2 0.4015.}

- 0.161211- 0.6366 sin
d si 2b/d~
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2b 2h
f or 0.4015 .- L- -0.,34 and I.416 - d

The longitudinal positions of the center of pressure of the forces

due to the sternplanes with respect to the hull LCB were determined by
AM I

the ratios z- w-r . These center-of-pressure locations were then referred
w

to the trailing edge of the sterrplanes and the resulting distances were

nondimensionalized by the mean chords c.

Figure 5 shows a plot of the center of pressure locations as func-

tions of effective aspect ratio. Although there is considerable scatter

in the data, particularly for the A sternplane series, it can be seen

that for a given aspect ratio the center of pressure in general moves

forward as the span parameter -L. increases and, in some cases, Is actu-

ally forward of the planes.

CONCLUSIOIS

From the experimental results of this investigation empirical

mathematical expressions have been developed to predict the contribu-

tion of sternplanes to the static stability derivative Z ' when the

sternplanes are appended to a submarine design whose basic hull is a

streamlined body of re•,olutian. A graphical method is provided to

estimate the location of the center of pressure with respect to the

trailing edge of the sternplanes.
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APPENDIX A

DERIVATION OF AN EQUATION FOR REPRESENTING THE RATIO
cZ-- AS A FUNCTION OF THE SPAN PARAMETER •-bSLot d

C2

g 27



r

APPEND)IX A

Derivation of an Equation for Representing the Ratio
CZa 2h
- as a Function of the Span Parameter-
C Lct d

If the lift distribution on a control surface in the freestream

is assumed to be elliptical, the lift,( 1 .i, is proportional to

2b b-
o ' (b, - x-) dx ---

If the lift due to sternplanes on a streamlined body of revolution

is assumed to be proportional tc the shaded area in the sketch

Iree-ptre-'

lift

/

bb

b

C7  1 i proportional to

2: W b - x) dx - 7b[: - - )- sin- 1K]

2M



The ratio C z is then
CLx

Czr -K(1- K,)!, 2- sin K (7)

C~aC?

A value of K for the average experimental value of C--- for eachC71 -

span was determined from Equation (7) and listed in Tabulation 1 together
C 

2b
with ' -4'2 and the product K(d).

TA.BULATION I

C2b KZ(•)
-4- KK(I--)d C L,1 d

0.734 0.3436 0.542 0.3978

0.978 0.4868 0.415 0.4059

1.182 (".5810 0.335 0.3960

1./,?0 0.6420 0.285 0.4064

It can be seen from Tabulation 1 that the values of K(-) are

cs9entially constant, giving an average value such that K( - 0.4015

0.4015or K - L ,
b

This indicates that the "defect" in the effective span of the wing

through the body is 2 x Kb - 0.4015d.

Substituting 0.4015 for K in Iquation (7) gives

2b

(7)4



CZa I 0.2556 [(d2b)- 0.16122½ 0.6366 sin- 0.4015

1 ~ ( b)"" - 2b/d

Tabulation 2 compares the values of CZ'- from the experiments with
CLa

those computed from Equations (2) and (8).

TAB'LATIoN 2

2b C (CZ. - CZ_
d C L i C ," C L .1

Experimental rquation (2) Equation (8)

0.734 0.3436 0.3434 0.3-00

0.978 0.4868 0.4898 0.4924

1.182 0.5810 0.5781 0.5760

1.426 0.6420 0.6420 0,6463

It can be seen that Equation (2) gives slightly better agreement
CZ'

with the experimental values of - than does Equation (8).
CL,
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APPENDIX B

GRAPHICAL PRESENTATION OF LONGITUDINAL AND NORMAL

FORCE AN• PITCHING MOMENT COEFFICIENTS

AS FUNCTIONS OF ANGLE OF ATTACK
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APPENDIX C

TABULATION OF LONGITUDINAL AND NORMAL FORCE AND

PITCHING MOMENT COEFFICIENTS DUE TO

ANGLE OF ATTACK
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TABLE 3 - TABULATION OF LONGITUDINAL AND NORMAL FORCE AND
PITCHING MOMENT COEFFICIENTS DUE TO ANGLE OF ATTACK

Bare Rody

VALUE! OJr ALL C IFFICIENTS MUST 01 MULTIPLIED BY 10 "1

DegDeg X) Z' Ilvi

-6 -10. 9 10.7 -12. 29
-4 -10.7 6.5 -8.84

-3 -10.7 4.4 --6.62

-Z -10.7 2.6 -4. 42

-1 -10.5 1. 3 -2.23

0 -10.6 0 0

1 -10.8 -1. 3 2. 22

2 -10.7 -2.8 4. 42

3 -10.7 -4.7 6.64

4 -10.6 -5.8 8.49

6 -10.6 -10. 5 12.69

8 -10.5 -16. 3 16. 31

10 -10.6 -24. 1 19.28

12 -10.4 -33.8 21.86

14 -10.0 -45.6 24. 27

16 -9.6 -58.4 26.4Z

18 -8.5 -73. 1 28. 55

54



r- Ip

-Cl

0. -r -

co IQ N -

x~ .0.

z '1

-X-

0! z

'i-i,

s-.f 
,,



G ~r- ~ .o -1 t- NJ r-
0(] L(n t- oo 00 'o - O ~ 4 r

14i

r-N r'0 0 L

-O CO O r- rn 00 m I

0

(-I,,

-3-

C-t4



- - �������1� 1-
4 N

� ON

0 N N Q W N r- .� -� O�''0 0 0' �1* Nr- if� N N if� NO � N .� 0
o - '�1 -4 t I - - r�'J � 'ON

U I I I I I i

___ -fj
L. �

U Z - -� t 1 -r -r '0 '0 1 - NO

- - 0 0 0 0' (0 t- �
X -

* I I I I I I I I I I I I I

-� ;'o

�.E -� '..O � a � *1* '.0 �
-3 *1*

__ ;ur:LI:i: - -

C
0
U

I-

I--- - - - - - - - - - - --

�
- L1� 0"

I ".-� '� 0 'J t '0 r--- N N
I -

I--- I

a N '� r - 0' . '0(0 '0E
1 0 0 t �-i -i *P '3(0 �r-� -I- N N '01

I I - -J ' **1� -.3 N
I I

.�1

I,�)
a C. 2-0 C -� -'2 -'- - -� N � 0' �r a -t� -t

'-I
I I I I I I I I I I I I

*0 -

0 -.

L -.0 .t '' N - -J � '� '0 (0 0 N 1' '0(0

I I I I I - - - -



C- M 01 V I -M W -

r.; -o 0r1 r 0* C), C) 0

aa

N N rn' ~ 'C ~

U L- -~ -~ - - ~ - ~ - N -- N

'.4~0 r- 0 7

CO 0 a, II Sr

4.04lj 
C j 't 0 c ) t c



- 0 - 7 c w t- N-0

N-N

I V~ .'D o

cJcc

etaj

-D t- N -

S-r -c cc - o - r- t-. -- I

77r m 11 'o 1r '0 N -" D3



-ýr -n- - - -

0 0 0, 00ck

'r -ý 0o

U,

r- .

I NJ

14

'~ >00 4) >

ID LI



LA t- -o - -

MJ It - j -- a ,

N -j mi rI -,j NJ "i cN N: a: '~ ~ t

c, ID o

-A

.~ ;'

0

4.40



r- ~ ~ co afl N N Or3, r- UN r I

go

r- in 0 LnU 0. '0 0- -r t- C 0' rn -4
'o N COý 1, 1*1 CO 0 0 ' V o N

o ~ I I .- q- 
4  

" 4~U r-4

I~a,

X o -P -y -1 co r.: - I S

-D t. 0, ý

jo .1coL 0 -, -t -D c

0v

U6



N N 4

-Jw-

'r 0 0, C) -v - :

r- 30 -VD 0 X

oS.. .. - - I - . '~1~ . ~ 0 . 7-

CD j "r 4I I -

U~~~~~~ -. . . . . .. . . . .



-- a - - n - - - - ---. co - 71 'D I
vA'1 N N .- D V LAL 0 n N u' f

v --- -.0 -

- ~0 00 ro t~.. r - a- ~ Or

a..

W W N ý N 'D 00 N '00 .

) f- (1 n I D a L, U-
*01

E Ný O* co '.0 00 N r1'.

IV -- z- -r 'o c



APPENDIX D

STATIC STABILITY DERIVATIVES, INCREMENTAL DERIVATIVES AND

FREE-STREAM LIFT-CURVE SLOPES FOR STERN

CONFIGURATION SERIES
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TABLE. 4 - STATIC STABILITY DERIVATIVES, INCRFMENTAL DERIVATIVES,
AND FREE-STREAM LIFT-CURVE SLOPES FOR

STERN CONFIGURAT1ON SERIES

Se1neZ' M ' Z M' Cz a
S te mr p l a n e z w mw L Zw a mw C z lC

Configuration

3A -0.01117 0.01117 -0.00315 -0.00145 1.223 3.502

5A -0.01189 0.01072 -0.00387 -0.00190 1.049 2.944

7A -0.01218 0.01060 -0.00416 -0.00202 0.866 2.509

9A -0.01239 0.01061 -0.00437 -0.00201 0.739 2.169

IIA -0.01239 0.01061 -0.00437 -0.00201 0.622 1.903

3B -0.01499 0.00906 -0.00697 -0.00356 1.815 3.754

5B -0.01662 0.00825 -0.00860 -0.00437 1.616 3.277

7B -0.01776 0.00770 -0.00974 -0.00492 1.432 2.883

9B -0.01833 0.00759 -0.01031 -0.00503 1.244 2.558

11B -0.01862 0.00768 -0.01060 -0.00494 1.085 2.287

66



TABLE 4 (continued)

Ste rnp lane Z' Hw ' .Z w' tMw C C

Configuration

3C -0.01933 0.00716 -0.01131 -0,00546 2.241 3.893

5C -0.02199 0.00586 -0.01397 -0.00676 2.043 3.472

7C -0.02396 0.00526 -0.01594 -0.00736 1.848 3.111

9C -0.02500 0.00469 -0.01698 -0.00793 1.630 2.804

lic -0.02sbc 0.00468 -0.0175.8 -0.0079q 1.440 2.542

3D -0.02498 0.00496 -0.0169r' -0.007,66 2.539 4.013

5D -0.02840 0.00359 -0.02038 -0.0C,904 2. 305 3.645

7D -0.0 11 37 0.00229 -0.02 335 -0.01033 2.122 3.321

9D -0.03438 0.00162 -0.02636 -0.01100 2.003 3.037

lID -0.03572 0.00073 -0.02770 -0.01189 1.808 2.791

±

Notes: 1. Z and M for the bare body are -0.00802 and 0.01262 respec-w w

tively.

2. CLA is computed from Equation (1) using the effective aspect

ratio of the planes extended through the body.

3. C. * -AZ
2A

[7
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